

РАСХОДОМЕР-СЧЕТЧИК ЭЛЕКТРОМАГНИТНЫЙ

ВЗЛЕТ ТЭР

(степень защиты ІР68)

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ Часть I

ШКСД.407212.002-50 РЭ

www.vzljot.nt-rt.ru

Система менеджмента качества «ВЗЛЕТ» соответствует требованиям ГОСТ Р ИСО 9001-2008 (сертификат соответствия № РОСС RU.ИС09.К00816) и международному стандарту ISO 9001:2008 (сертификат соответствия № RU-00816)

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 —

Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

сайт: www.vzljot.nt-rt.ru || эл. почта: vzl@nt-rt.ru

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
ГАРАНТИИ ИЗГОТОВИТЕЛЯ	5
1. ОПИСАНИЕ И РАБОТА	6
1.1. Назначение	6
1.2. Технические характеристики	7
1.3. Метрологические характеристики	8
1.4. Состав	9
1.5. Устройство и работа	10
1.6. Внешние связи расходомера	12
1.6.1. Интерфейс RS-485	12
1.6.2. Вход управления	12
1.6.3. Универсальные выходы	12
1.6.4. Токовый выход	12
1.7. Виды исполнений	13
1.8. Маркировка и пломбирование	13
2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	14
2.1. Эксплуатационные ограничения	14
2.2. Выбор типоразмера расходомера	15
2.3. Подготовка к работе	19
3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	21
3.1. Проверка технического состояния	21
3.2. Поверка	22
4. УПАКОВКА, ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	23
ПРИЛОЖЕНИЕ А. Вид составных частей расходомера	24
ПРИЛОЖЕНИЕ Б. Схемы выходов и входа	28
ПРИЛОЖЕНИЕ В. Источник вторичного питания	30

Настоящий документ распространяется на расходомер-счетчик электромагнитный «ВЗЛЕТ ТЭР» (далее – расходомер) со степенью защиты IP68 и предназначен для ознакомления с устройством и порядком эксплуатации расходомера.

В связи с постоянной работой по усовершенствованию изделия в расходомере возможны отличия от настоящего руководства, не влияющие на метрологические характеристики и функциональные возможности изделия.

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

D_y - диаметр условного прохода;

БЭ - блок электроники;

ППР - первичный преобразователь расхода;

ЭДС - электродвижущая сила.

* * *

- Расходомер-счетчик электромагнитный «ВЗЛЕТ ТЭР» зарегистрирован в Государственном реестре средств измерений РФ под № 39735-08 (сертификат об утверждении типа средств измерений RU.C.29.006.A № 34185).
- Расходомер-счетчик электромагнитный «ВЗЛЕТ ТЭР» соответствует требованиям нормативных документов по электромагнитной совместимости и безопасности.
- Расходомер-счетчик электромагнитный «ВЗЛЕТ ТЭР» соответствует требованиям санитарно-эпидемиологических правил и нормативов.
- Расходомер-счетчик электромагнитный «ВЗЛЕТ ТЭР» соответствует требованиям системы добровольной сертификации «Газпромсерт».

ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- Изготовитель гарантирует соответствие расходомеров «ВЗЛЕТ ТЭР» всех исполнений техническим условиям в пределах гарантийного срока 21 месяц с даты первичной поверки при соблюдении следующих условий:
- а) хранение, транспортирование, монтаж и эксплуатация изделия осуществляются в соответствии с эксплуатационной документацией на изделие;
- б) монтаж и пусконаладочные работы выполнены в течение **15 меся- цев** с даты первичной поверки с отметкой в паспорте изделия;

При несоблюдении условия пункта Іб гарантийный срок эксплуатации составляет **15 месяцев** с даты первичной поверки изделия.

ПРИМЕЧАНИЕ. Дата ввода изделия в эксплуатацию и дата постановки на сервисное обслуживание указываются в паспорте на изделие в разделе «Отметки о проведении работ», заверяются подписью ответственного лица и печатью сервисного центра.

- II. Гарантийный срок продлевается на время выполнения гарантийного ремонта (без учета времени его транспортировки), если срок проведения гарантийного ремонта превысил один календарный месяц.
- III. Изготовитель не несет гарантийных обязательств в следующих случаях:
- а) отсутствует паспорт на изделие с заполненным разделом «Свидетельство о приемке»;
- б) изделие имеет механические повреждения;
- в) изделие хранилось, транспортировалось, монтировалось или эксплуатировалось с нарушением требований эксплуатационной документации на изделие;
- г) отсутствует или повреждена пломба с поверительным клеймом или пломба корпуса блока электроники;
- д) изделие или его составная часть подвергалось разборке или доработке:
- е) производилось вскрытие корпуса блока электроники.

* * *

Неисправное изделие для выполнения гарантийного ремонта направляется в региональный или головной сервисный центр.

1. ОПИСАНИЕ И РАБОТА

1.1. Назначение

- 1.1.1. Расходомер предназначен для измерения в напорных трубопроводах среднего объёмного расхода и объёма:
 - водопроводной воды;
 - абразивных сред (пульпы, шлама, сточной воды и т.д.);
 - слабо электропроводных жидкостей (спирта, патоки, химикоорганических жидкостей и т.п.).

Расходомеры могут устанавливаться как в металлические, так и в пластиковые (металлопластиковые) трубопроводы.

- 1.1.2. Расходомер-счетчик электромагнитный «ВЗЛЕТ ТЭР» обеспечивает:
 - измерение среднего объемного расхода при прямом и обратном направлении потока;
 - определение объема нарастающим итогом отдельно для прямого и обратного направления потока, а также их алгебраической суммы с учетом направления потока;
 - дозирование предварительно заданного значения объема жидкости или дозирование в режиме «старт-стоп» и определение при этом величины отмеренной дозы и времени дозирования;
 - вывод результатов измерений в виде токового, частотноимпульсных и логических сигналов;
 - автоматический контроль наличия нештатных ситуаций и отказов;
 - вывод измерительной, диагностической, установочной и другой информации через последовательный интерфейс RS-485;
 - защиту установочных данных от несанкционированного доступа.

Расходомер обеспечивает расчет значений массового расхода и массы при введении в прибор значения плотности контролируемой жидкости. Погрешность определения массового расхода и массы не нормирована.

Расходомер также может контролировать заполнение трубопровода жидкостью.

1.2. Технические характеристики

1.2.1. Значения наибольшего измеряемого среднего объемного расхода Q_{наиб} для различных диаметров условного прохода (типоразмеров первичного преобразователя расхода) D_∨ приведены в табл.1.

Таблица 1

Обозначение параметра	Значение параметра												
D _y , мм	10	15	20	25	32	40	50	65	80	100	150	200	300
Q _{наиб} , м ³ /ч	2,83	6,37	11,32	17,69	28,98	45,28	70,75	119,6	181,1	283,0	636,8	1132	2547

- 1.2.2. Чувствительность расходомера по скорости потока 0,01 м/с.
- 1.2.3. Параметры контролируемой жидкости:
 - удельная проводимость не менее 10⁻⁴Cм/м;
 - скорость потока до 10 м/с.
 - температура от минус 10 до 150 °C при футеровке фторопластом и от минус 10 до 70 °C при футеровке полиуретаном;
 - давление в трубопроводе до 2,5 МПа. По заказу фланцованные расходомеры Dy20-Dy150 могут поставляться на давление 4,0 МПа.
- 1.2.4. Входы и выходы внешних связей:
 - универсальные выходы 2 (по заказу);
 - вход управления 1 (по заказу);
 - токовый выход 1 (по заказу);
 - интерфейс RS-485 1 (по заказу).
- 1.2.5. Электропитание расходомера:
 - напряжение питания стабилизированное напряжение постоянного тока значением из диапазона (22-26) В с уровнем пульсаций не более $\pm 1,0$ %. Питание от сети 220 В 50 Гц может обеспечиваться с помощью источника вторичного питания, поставляемого по заказу (Приложение В);
 - потребляемая мощность не более 15 Вт.
- 1.2.6. Эксплуатационные параметры:
 - средняя наработка на отказ 75 000 ч;
 - средний срок службы 12 лет.
- 1.2.7. Расходомер соответствует требованиям ГОСТ Р 52931 по устойчивости:
 - к климатическим воздействиям группе Д1 (диапазон температуры окружающего воздуха от от минус 25 до 70°С, относительная влажность до 100% при 40°С и более низких температурах, с конденсацией влаги);
 - к механическим воздействиям группе N2;

- к атмосферному давлению – группе Р2.

Степень защиты расходомера соответствует коду IP68 по ГОСТ 14254. Глубина полного погружения – не более 3 метров.

1.2.8. Вид и массогабаритные характеристики расходомера приведены в Приложении А.

1.3. Метрологические характеристики

1.3.1. Пределы допускаемой основной относительной погрешности при измерении, индикации, регистрации, хранении и передаче результатов измерений среднего объемного расхода, объема различных жидкостей при любом направлении потока в диапазоне расходов от 0,03. Q_{наиб} до Q_{наиб} составляют ±0,35 %.

Пределы допускаемой основной приведенной погрешности при измерении, индикации, регистрации, хранении и передаче результатов измерений среднего объемного расхода, объема различных жидкостей при любом направлении потока в диапазоне расходов от $0.001 \cdot Q_{\text{наиб}}$ до $0.03 \cdot Q_{\text{наиб}}$ составляют ± 0.35 %.

Пределы допускаемой дополнительной погрешности расходомера составляют:

- ±0,2 % при изменении температуры контролируемой жидкости в пределах рабочего диапазона;
- ±0,1% на каждые 10°C при изменении температуры окружающего воздуха в пределах рабочего диапазона.
- 1.3.2. Пределы допускаемой относительной погрешности регистрации времени наработки ±0,1%.
- 1.3.3. По заказу возможна поставка расходомеров типоразмера Dy300 с пределами относительной погрешности $\pm 1,0$ % в диапазоне расходов от $0,03\cdot Q_{\text{наиб}}$ до $Q_{\text{наиб}}$ и пределами приведенной погрешности $\pm 1,0$ % в диапазоне расходов от $0,002\cdot Q_{\text{наиб}}$ до $0,03\cdot Q_{\text{наиб}}$, где $Q_{\text{наиб}}=1273$ м³/ч.

1.4. Состав

1.4.1. Комплект поставки расходомера приведен в табл.2.

Таблица 2

Наименование	Кол.	Прим.
Расходомер	1	Примечание 1
Комплект монтажный	1	Примечание 2
Паспорт	1	
Комплект эксплуатационной документации в составе:	1	Ha CD-носителе
- руководство по эксплуатации ч. I, II		
- инструкция по монтажу		

ПРИМЕЧАНИЯ.

- 1. Типоразмер расходомера и его исполнение (см. п.1.7) в соответствии с заказом.
- 2. В комплект входят: прокладки, кабель, пломбы, проволока пломбировочная.
- 1.4.2. Максимальная длина поставляемого кабеля не более 100 м. Варианты исполнения кабеля приведены в табл.3.

Таблица 3

Маркировка кабеля [количество жил]	нет [12]	① [5]	② [5]	③ [5]	(4) [4]
Универсальный выход 1	+	_	+	+	_
Универсальный выход 2	+	_	+	_	_
Токовый выход	+	_	_	_	+
Интерфейс RS-485	+	+	_	_	_
Вход управления	+	_	_	+	_
Электропитание =24 В	+	+	+	+	+

ПРИМЕЧАНИЕ. Символом «+» обозначено наличие линии связи, символом «-» – отсутствие линии связи.

1.4.3. Присоединительная арматура для монтажа расходомеров на объекте поставляется по заказу. В состав присоединительной арматуры могут включаться: фланцы, габаритный имитатор первичного преобразователя расхода (ППР), крепеж, дополнительные прокладки.

Допустимое давление поставляемой присоединительной арматуры — 2,5 МПа. Поставка присоединительной арматуры на давление 4,0 МПа — по заказу.

1.4.4. Эксплуатационная документация и карты заказа на данное изделие и другую продукцию, выпускаемую фирмой «ВЗЛЕТ», размещены на сайте по адресу www.vzljot.ru.

Там же размещена программа «Универсальный просмотрщик», включающая в свой состав инструментальную программу «Монитор ВЗЛЕТ ТЭР» для работы с прибором по интерфейсу RS-485.

1.5. Устройство и работа

1.5.1. Расходомер ВЗЛЕТ ТЭР (рис.1) состоит из первичного преобразователя расхода (2) и вторичного преобразователя — микропроцессорного блока электроники (1).

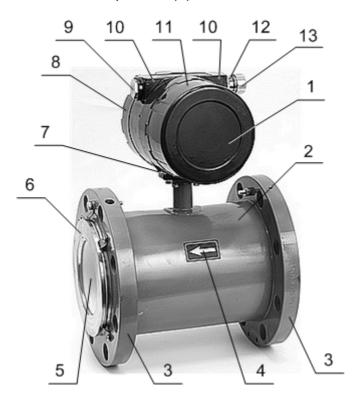


Рис.1. Внешний вид расходомера ВЗЛЕТ ТЭР.

- 1.5.2. Проточная часть первичного преобразователя (2) представляет собой цилиндр с электроизоляционным покрытием внутренней поверхности (5). Материал покрытия фторопласт либо полиуретан, в зависимости от назначения расходомера.
- 1.5.3. На торцевые поверхности первичного преобразователя с футеровкой фторопластом для предохранения ее в процессе монтажа и эксплуатации устанавливаются защитные кольца (6).
- 1.5.4. Для съема измерительного сигнала на внутренней поверхности проточной части диаметрально в горизонтальной плоскости расположены два электрода, контактирующие с контролируемой жидкостью. Материал электродов зависит от исполнения расходомера, а также может быть выбран по заказу. Маркировка с обозначением материала электродов (Н нержавеющая сталь, Та тантал или Ті титан) наносится на цилиндрическую поверхность выступа проточной части расходомера под присоединение типа «сэндвич» или фланца (3) расходомера.
- 1.5.5. Для контроля заполнения жидкостью проточной части в ее вертикальной плоскости диаметрально расположены еще два электрода.

- 1.5.6. На наружную поверхность корпуса первичного преобразователя наносится стрелка (4), указывающая прямое направление потока контролируемой жидкости для установленного в трубопровод расходомера.
- 1.5.7. Первичный преобразователь, в зависимости от исполнения расходомера, а также его типоразмера, выполняется в разных конструктивах:
 - под присоединение типа «сэндвич» (Dy10, Dy15), когда первичный преобразователь с помощью шпилек зажимается между фланцами трубопровода:
 - фланцованным (Dy20-Dy300), когда фланцы первичного преобразователя крепятся болтами к ответным фланцам трубопровода.
- 1.5.8. Металлический корпус блока электроники (БЭ) содержит платы с электронными компонентами, коммутационную плату и закрывается с двух сторон навинчивающимися крышками (8) и (11). В верхней части корпуса имеются два четырехгранных выступа (10). Один из выступов снабжен заглушкой (9), другой приборной частью штепсельного разъема (12) для присоединения кабеля питания и связи. При отсутствии присоединенного кабеля на приборную часть штепсельного разъема (12) устанавливается предохранительный колпачок (13). Клемма защитного заземления расходомера (7) расположена снизу на корпусе блока электроники.
- 1.5.9. Принцип работы электромагнитного расходомера основан на измерении электродвижущей силы (ЭДС) индукции, возникающей в объеме электропроводящей жидкости, движущейся в магнитном поле, создаваемом электромагнитной системой в сечении канала первичного преобразователя расхода. Измеренный сигнал ЭДС, прямо пропорциональный объемному расходу жидкости, подается в микропроцессорный блок электроники, где усиливается и преобразуется в выходные сигналы расходомера.

1.6. Внешние связи расходомера

1.6.1. Интерфейс RS-485

Последовательный интерфейс RS-485 позволяет управлять прибором, считывать измерительную, установочную и диагностическую информацию, модифицировать установочные параметры. Интерфейс RS-485 поддерживает протокол ModBus (RTU ModBus и ASCII ModBus), принятый в качестве стандартного в приборах фирмы «ВЗЛЕТ».

Последовательный интерфейс RS-485 обеспечивает связь по кабелю в группе из нескольких абонентов, одним из которых может быть персональный компьютер, при длине линии связи до 1200 м. При наличии в группе приборов разных производителей для вза-имного согласования протоколов обмена может использоваться адаптер сетевых протоколов «ВЗЛЕТ АС» АСПВ-010.

Скорость обмена по интерфейсу RS-485 (от 2400 до 115200 Бод), а также параметры связи устанавливаются программно.

1.6.2. Вход управления

Вход управления предназначен для запуска дозирования предварительно заданного значения объема жидкости или запуска и останова дозирования в режиме «старт-стоп» по сигналу управления.

Схема цепи входа управления, а также параметры управляющего сигнала приведены в Приложении Б.

1.6.3. Универсальные выходы

Расходомер имеет два гальванически развязанных универсальных выхода №1 и №2, назначение выходов в различных режимах задается установками, приведенными в части ІІ настоящего руководства. Схема цепей универсальных входов приведена в Приложении Б.

1.6.4. Токовый выход

Гальванически развязанный токовый выход расходомера может работать в одном из трех диапазонов: **0-5 мA**, **0-20 мA** или **4-20 мA**.

Токовый выход в диапазонах работы **0-20 мА** или **4-20 мА** может работать на нагрузку сопротивлением до 1 кОм, в диапазоне **0-5 мА** – до 2,5 кОм.

Допустимая длина кабеля связи по токовому выходу определяется сопротивлением линии связи. При этом сумма входного сопротивления приемника токового сигнала и сопротивления линии связи не должна превышать указанного сопротивления нагрузки.

Назначение токового выхода задается установками, приведенными в части II настоящего руководства.

1.7. Виды исполнений

Исполнения расходомера отличаются материалами внутреннего покрытия проточной части и электродов (с учетом вида контролируемой жидкости):

- **О** Φ **xxx**, **О C xxx** общепромышленное исполнение;
- **А Ф ххх**, **А С ххх** агрессивостойкое исполнение (для работы с агрессивными жидкостями);

В обозначении исполнения расходомера:

- **Ф** тип присоединения фланцевое;
- C тип присоединения «сэндвич»;
- **ххх** типоразмер (Dy) расходомера.

1.8. Маркировка и пломбирование

- 1.8.1. Сверху на корпус БЭ закрепляется шильд (рис.2), на котором указываются:
 - характеристики расходомера (напряжение питания, максимальное давление и температура контролируемой жидкости, степень защиты);
 - исполнение расходомера;
 - заводской номер расходомера.

Рис.2. Вид шильда расходомера.

- 1.8.2. После поверки расходомера пломбируется контактная пара разрешения модификации калибровочных параметров.
- 1.8.3. Для защиты от несанкционированного доступа при эксплуатации пломбируются навесной пломбой крышки корпуса БЭ.

2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1. Эксплуатационные ограничения

- 2.1.1. Эксплуатация расходомера должна производиться в условиях внешних воздействующих факторов, не превышающих допустимых значений, оговоренных в п.1.2.7.
- 2.1.2. Расходомер может устанавливаться в вертикальном, горизонтальном или наклонном трубопроводе. Наличие грязевиков или специальных фильтров не обязательно.
- 2.1.3. Точная и надежная работа расходомера обеспечивается при выполнении в месте установки ППР следующих условий:
 - отсутствует скопление воздуха;
 - давление жидкости исключает газообразование в трубопроводе;
 - на входе и выходе ППР имеются прямолинейные участки трубопровода соответствующей длины с Dy, равным Dy ППР. На этих участках не должно быть никаких устройств или элементов, вызывающих изменение структуры потока жидкости;
 - весь внутренний объем канала ППР в процессе работы расходомера заполнен жидкостью;
 - напряженность внешнего магнитного поля промышленной частоты не превышает 400 А/м.

ВНИМАНИЕ! Запрещается на всех этапах работы с расходомером касаться руками электродов, находящихся во внутреннем канале ППР.

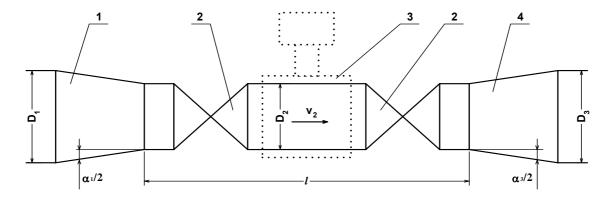
Рекомендации по выбору места установки и правила монтажа (демонтажа) расходомера, описание набора элементов арматуры изложены в документе «Расходомер-счетчик электромагнитный ВЗЛЕТ ТЭР (степень защиты IP68). Инструкция по монтажу». ШКСД.407212.002-50 ИМ.

2.1.4. Тип и состав контролируемой жидкости (наличие и концентрация взвесей, посторонних жидкостей и т.п.), режим работы и состояние трубопровода не должны приводить к появлению отложений, влияющих на работоспособность и метрологические характеристики расходомера.

Для обеспечения работоспособности расходомера в системе, использующей угольный фильтр, необходимо следить за его исправностью.

2.1.5. Необходимость защитного заземления прибора определяется в соответствии с требованиями главы 1.7 «Правил устройства электроустановок» в зависимости от напряжения питания и условий размещения прибора.

- 2.1.6. Молниезащита объекта размещения прибора, выполненная в соответствии с «Инструкцией по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» СО153-34.21.122-2003 (утвержденной Приказом Минэнерго России №280 от 30.06.2003), предохраняет прибор от выхода из строя при наличии молниевых разрядов.
- 2.1.7. Требования к условиям эксплуатации и выбору места монтажа, приведенные в настоящей эксплуатационной документации, учитывают наиболее типичные внешние факторы, влияющие на работу расходомера.


На объекте эксплуатации могут существовать или возникнуть в процессе его эксплуатации внешние факторы, не поддающиеся предварительному прогнозу, оценке или проверке и которые производитель не мог учесть при разработке.

В случае проявления подобных факторов следует устранить их или найти иное место эксплуатации, где данные факторы отсутствуют или не оказывают влияния на работу изделия.

2.2. Выбор типоразмера расходомера

- 2.2.1. Выбор типоразмера расходомера определяется диапазоном расходов в трубопроводе, где будет устанавливаться ППР. Если диапазон расходов для данного трубопровода укладывается в диапазон расходов нескольких типоразмеров расходомера, то определять нужный типоразмер рекомендуется исходя из заданного предельного значения потерь напора.
- 2.2.2. Если значение Dy выбранного типоразмера расходомера меньше значения Dy трубопровода, куда предполагается устанавливать ППР, то для монтажа в трубопровод используются переходные конуса (конфузор и диффузор).
- 2.2.3. Определить гидравлические потери напора в системе <конфузор ППР диффузор>, приведенной на рис.3, можно по нижеприведенной методике.
- 2.2.3.1. Исходные данные для определения потерь напора:

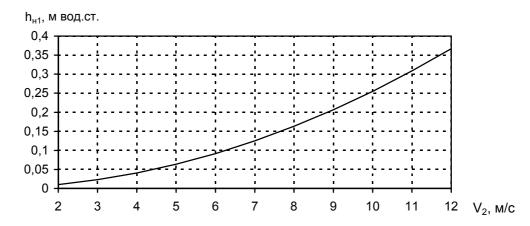
- объемный расход жидкости в данном трубопроводе	- Q	[м³/ч];
 - Dy подводящего трубопровода 	- D1	[MM];
- Dy ППР	- D2	[MM];
 - Dy отводящего трубопровода 	- D3	[MM];
- угол конусности конфузора	- α_1	[град];
- угол конусности диффузора	- α ₃	[град];
- длина прямолинейного участка	<i>- 1</i>	[MM].

1 — конфузор; 2 — полнопроходная шаровая задвижка; 3 — ППР; 4 — диффузор.

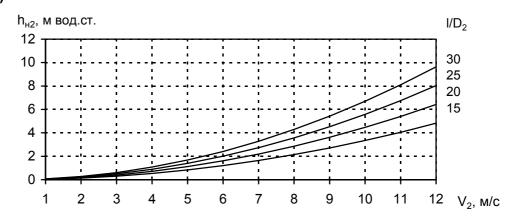
Рис. 3. Схема трубопровода в месте установки ППР.

2.2.3.2. Согласно известному принципу суперпозиции суммарные потери напора h_{H} в системе <конфузор – ППР – диффузор> складываются из местных потерь напора в конфузоре h_{H1} , прямолинейном участке (длиной l) h_{H2} и диффузоре h_{H3} .

Потери напора в конфузоре определяются по графику рис.4а, где $\mathbf{v_2}$ — скорость потока жидкости в прямолинейном участке. График зависимости потерь напора от скорости потока рассчитан для угла конусности конфузора α_1 = 20 °. Для определения скорости потока жидкости по значению объемного расхода \mathbf{Q} можно воспользоваться графиком рис.5 или формулой:


$$v[M/c] = \frac{Q[M^3/4]}{0.9 \cdot \pi \cdot D_y^2[MM]} \cdot 10^3.$$

Потери напора в прямолинейном участке определяются по графику рис.4б. График зависимости потерь напора от скорости потока рассчитан для отношений длины прямолинейного участка к диаметру 15; 20; 25 и 30.


Потери напора в диффузоре определяются по графику рис.4в. График зависимости потерь напора от скорости потока рассчитан для угла конусности диффузора α_3 = 20° и отношений наибольшего диаметра диффузора к наименьшему 2,0; 2,5; 3,5 и 4,0.

ПРИМЕЧАНИЕ. Программное обеспечение для проведения уточненного расчета потерь напора в системе <конфузор – ППР – диффузор> поставляется по заказу.

в)

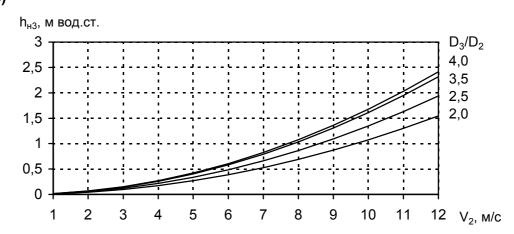


Рис.4. Графики зависимостей потерь напора в конфузоре (a), прямолинейном участке (б) и диффузоре (в).

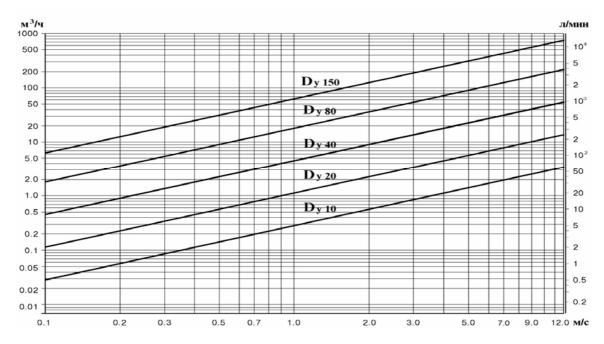


Рис.5. График зависимости расхода жидкости от скорости потока для различных значений $\mathbf{D}_{\mathbf{y}}$.

2.3. Подготовка к работе

- 2.3.1. Меры безопасности
- 2.3.1.1. К работе с расходомером допускается персонал, изучивший эксплуатационную документацию на изделие.
- 2.3.1.2. При подготовке изделия к использованию и в процессе эксплуатации должны соблюдаться «Правила технической эксплуатации электроустановок потребителей» и «Межотраслевые правила по охране труда (Правила безопасности) при эксплуатации электроустановок».
- 2.3.1.3. При проведении работ с расходомером опасными факторами для человека являются:
 - переменное напряжение (с действующим значением до 264 В частотой 50 Гц);
 - давление в трубопроводе (до 4,0 МПа);
 - температура рабочей жидкости (до 150 °C);
 - другие факторы, связанные с профилем и спецификой объекта, где производится монтаж.
- 2.3.1.4. Запрещается использовать расходомеры при давлении в трубопроводе более 2,5 МПа (более 4,0 МПа – для расходомеров, выпускаемых по заказу).
- 2.3.1.5. В процессе работ по монтажу, пусконаладке или ремонту расходомера запрещается:
 - производить подключения к расходомеру, переключения режимов или замену электрорадиоэлементов при включенном питании;
 - демонтаж расходомера из трубопровода до полного снятия давления на участке трубопровода, где производятся работы;
 - использовать неисправные электрорадиоприборы, электроинструменты либо без подключения их корпусов к магистрали защитного заземления.
 - 2.3.2. При вводе в эксплуатацию расходомера должно быть проверено:
 - соответствие направления стрелки на корпусе ППР направлению потока жидкости в трубопроводе;
 - соответствие длин прямолинейных участков на входе и выходе расходомера;
 - правильность подключения расходомера и взаимодействующего оборудования в соответствии с выбранной схемой;
 - правильность заданных режимов работы выходов расходомера;
 - соответствие напряжения питания заданным техническим характеристикам.

- 2.3.3. Расходомер при первом включении или после длительного перерыва в работе готов к эксплуатации после:
 - полного прекращения динамических гидравлических процессов в трубопроводе, связанных с изменением скорости и расхода жидкости (при опорожнении или заполнении трубопровода, регулировке расхода и т.п.);
 - 30-минутной промывки ППР потоком жидкости;
 - 30-минутного прогрева расходомера.
- 2.3.4. Перед вводом в эксплуатацию необходимо опломбировать расходомер и задвижки байпаса (при его наличии).

3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1. Проверка технического состояния

- 3.1.1. Введенный в эксплуатацию расходомер рекомендуется подвергать периодическому осмотру с целью контроля:
 - работоспособности расходомера;
 - соблюдения условий эксплуатации;
 - наличия напряжения питания;
 - отсутствия внешних повреждений составных частей расходомера;
 - надежности электрических и механических соединений.

Периодичность осмотра зависит от условий эксплуатации, но не должна быть реже одного раза в две недели.

3.1.2. Несоблюдение условий эксплуатации расходомера в соответствии с разделом 1.2.7 может привести к его отказу или превышению допустимого уровня погрешности измерений.

Внешние повреждения также могут привести к превышению допустимого уровня погрешности измерений. При появлении внешних повреждений изделия или кабеля питания, связи необходимо обратиться в сервисный центр или региональное представительство для определения возможности его дальнейшей эксплуатации.

3.1.3. В процессе эксплуатации расходомера не реже одного раза в год необходимо проводить профилактический осмотр внутреннего канала ППР на наличие загрязнений и/или отложений. Допускается наличие легкого налета, который должен сниматься с помощью чистой мягкой ветоши, смоченной в воде.

При наличии загрязнений и/или отложений другого вида либо их существенной толщины необходимо произвести очистку поверхности ППР и отправить расходомер на внеочередную поверку.

Очистку отложений в этом случае рекомендуется проводить сразу же после извлечения расходомера из трубопровода с помощью воды, чистой ветоши и неабразивных моющих средств.

3.1.4. При отправке расходомера на поверку или в ремонт необходимо после демонтажа очистить внутренний канал ППР от отложений, образовавшихся в процессе эксплуатации, а также от остатков рабочей жидкости. Остатки агрессивной жидкости должны быть нейтрализованы.

При монтаже и демонтаже расходомера необходимо руководствоваться инструкцией по монтажу расходомера.

Отправка расходомера для проведения поверки либо ремонта должна производиться с паспортом расходомера. В сопроводительных документах необходимо указывать почтовые реквизиты, телефон и факс отправителя, а также способ и адрес обратной доставки.

3.2. Поверка

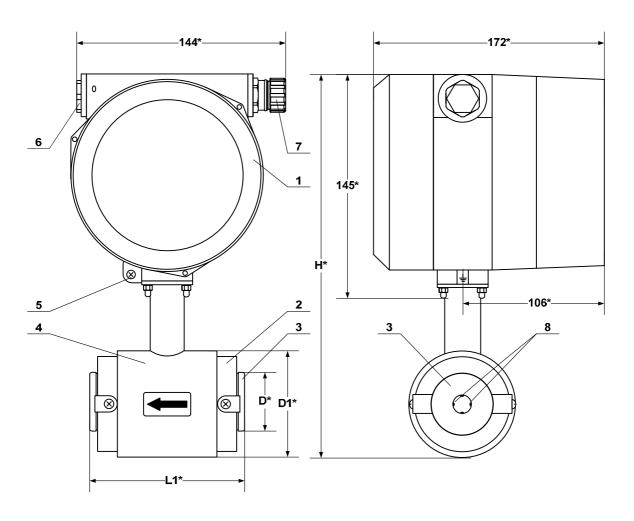
3.2.1. Расходомер-счетчик электромагнитный «ВЗЛЕТ ТЭР» проходит первичную поверку при выпуске из производства и после ремонта, периодические – в процессе эксплуатации.

Межповерочный интервал – 4 года.

3.2.2. Поверка расходомера производится в соответствии с разделом «Методика поверки» документа «Расходомер-счетчик электромагнитный ВЗЛЕТ ТЭР (степень защиты IP68). Руководство по эксплуатации. Часть II». ШКСД.407212.002-50 РЭ1.

4. УПАКОВКА, ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

4.1. Расходомер «ВЗЛЕТ ТЭР» упаковывается в индивидуальную тару категории КУ-2 по ГОСТ 23170 (коробку из гофрированного картона либо деревянный ящик).

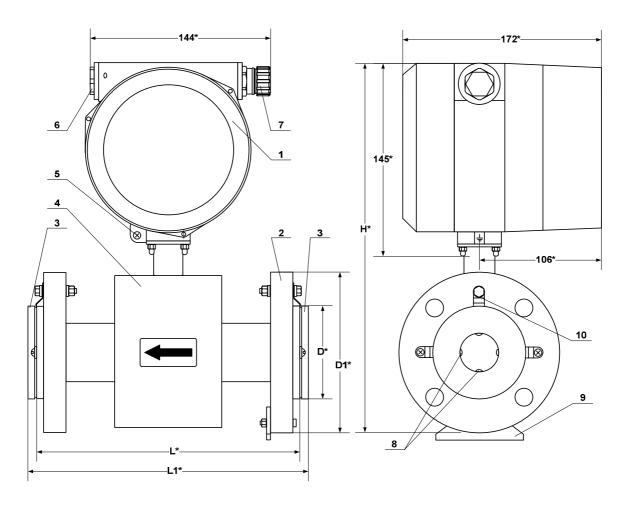

Присоединительная арматура поставляется в отдельной таре россыпью или в сборе на один или несколько комплектов.

4.2. Хранение расходомера должно осуществляться в упаковке изготовителя в сухом отапливаемом помещении в соответствии с требованиями группы 1 по ГОСТ 15150. В помещении для хранения не должно быть токопроводящей пыли, паров кислот и щелочей, а также газов, вызывающих коррозию и разрушающих изоляцию.

Расходомер не требует специального технического обслуживания при хранении.

- 4.3. Расходомеры могут транспортироваться автомобильным, речным, железнодорожным и авиационным (кроме негерметизированных отсеков) транспортом при соблюдении следующих условий:
 - транспортировка осуществляется в заводской таре;
 - отсутствует прямое воздействие влаги;
 - температура не выходит за пределы от минус 40 до 50 °C;
 - влажность не превышает 95 % при температуре до 35 °C;
 - вибрация в диапазоне от 10 до 500 Гц с амплитудой до 0,35 мм или ускорением до 49 m/c^2 ;
 - удары со значением пикового ускорения до 98 м/c²;
 - уложенные в транспорте изделия закреплены во избежание падения и соударений.

ПРИЛОЖЕНИЕ А. Вид составных частей расходомера

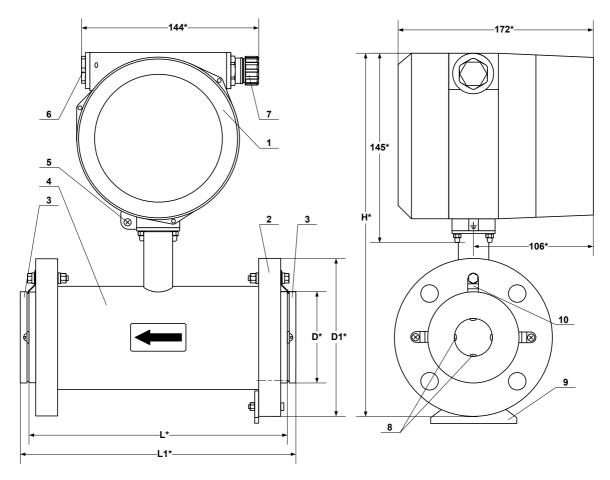


* - справочный размер

1 — блок электроники; 2 — место маркировки материала электродов; 3 — защитное кольцо; 4 — первичный преобразователь расхода; 5 — клемма заземления; 6 — заглушка; 7 — приборная часть штепсельного разъема с установленным предохранительным колпачком; 8 — электроды.

Dy, мм	D*, мм	D1*, мм	L1*, мм (с кольцами)	Н*, мм	Масса, не более, кг
10	34	61	93	240	3,9
15	39	61	93	240	4,0

Рис.А.1. Вид расходомера Dy10, Dy15 (под присоединение типа «сэндвич», с защитными кольцами).

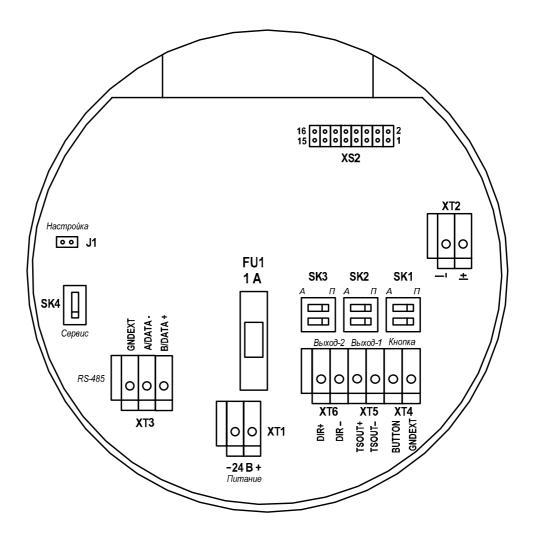


* - справочный размер

1 — блок электроники; 2 — место маркировки материала электродов; 3 — защитное кольцо; 4 — первичный преобразователь расхода; 5 — винт крепления заземляющего проводника; 6 — заглушка; 7 — приборная часть штепсельного разъема с установленным предохранительным колпачком; 8 — электроды; 9 — вспомогательная опора; 10 — элемент крепления защитного кольца, обеспечивающий электрический контакт корпуса расходомера с рабочей жидкостью.

Dy, мм	D*, мм	D1*, мм	L*, мм (без колец)	L1*, мм (с кольцами)	Н*, мм	Масса, не более, кг
20	50	100	142	150	270	6,0
25	58	110	192	200	280	6,8
32	65	130	192	200	290	8,5
40	75	140	192	200	300	9,2

Рис.А.2. Вид расходомера Dy20-40 (фланцованный, с защитными кольцами).



* - справочный размер

1 — блок электроники; 2 — место маркировки материала электродов; 3 — защитное кольцо; 4 — первичный преобразователь расхода; 5 — винт крепления заземляющего проводника; 6 — заглушка; 7 — приборная часть штепсельного разъема с установленным предохранительным колпачком; 8 — электроды; 9 — вспомогательная опора; 10 — элемент крепления защитного кольца, обеспечивающий электрический контакт корпуса расходомера с рабочей жидкостью.

Dy, мм	D*, мм	D1*, мм	L*, мм (без колец)	L1*, мм (с кольцами)	Н*, мм	Масса, не более, кг
50	87	155	192	200	315	10,9
65	109	175	192	200	325	12,6
80	120	190	192	200	340	14,9
100	149	225	242	250	370	20,1
150	202	290	262	270	430	35,3
200	258	358	322	340	493	52,5
300	362	475	482	500	607	98,5

Рис.А.3. Вид расходомера Dy50-300 (фланцованный, с защитными кольцами).

- FU1 предохранитель 1 А по цепи =24 В;
- J1 контактная пара разрешения модификации калибровочных параметров;
- SK1 переключатель установки режима работы входа управления;
- SK2 переключатель установки режима работы оконечного каскада универсального выхода №1;
- SK3 переключатель установки режима работы оконечного каскада универсального выхода №2;
- SK4 переключатель режима СЕРВИС;
- XT1 клеммная колодка подключения кабеля питания =24B;
- XT2 клеммная колодка токового выхода;
- XT3 клеммная колодка интерфейса RS-485;
- XT4 клеммная колодка входа управления;
- XT5 клеммная колодка универсального выхода №1;
- XT6 клеммная колодка универсального выхода №2;
- XS2 технологическая клеммная колодка.

Рис.А.4. Вид коммутационной платы.

ПРИЛОЖЕНИЕ Б. Схемы выходов и входа

Б.1. Универсальные выходы

Для обеспечения сопряжения с различными типами приемников оконечные каскады выходов БЭ (рис.Б.1) могут работать как при питании от внутреннего развязанного источника питания (активный режим), так и от внешнего источника питания (пассивный режим). Типовая поставка — пассивный режим работы оконечных каскадов.

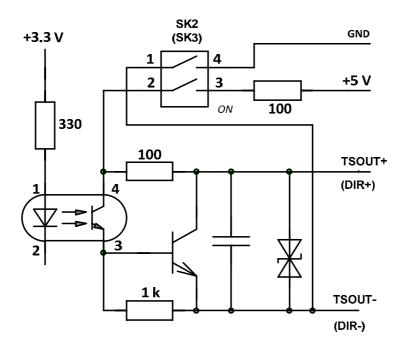


Рис.Б.1. Схема оконечного каскада универсальных выходов.

В активном режиме напряжение на выходе при отсутствии импульса, а также соответствующее уровню **Высокий** в логическом режиме может быть от 4,5 до 5,0 В. При наличии импульса и при уровне **Низкий** в логическом режиме — напряжение на выходе не более 0,5 В. Работа выхода в активном режиме допускается на нагрузку с сопротивлением не менее 1 кОм.

Подключение оконечного каскада выхода №1 (выхода №2) к внутреннему источнику питания + 5 В осуществляется с помощью переключателя SK2 (SK3) на коммутационной плате.

В пассивном режиме допускается питание от внешнего источника напряжением постоянного тока до 30 В, допустимое значение коммутируемого тока нагрузки не более 200 мА.

Длина линии связи для универсальных выходов – до 300 м.

В скобках указаны обозначения сигналов входа №2.

Б.2. Токовый выход

Токовый выход БЭ в диапазонах работы (0-20) мА или (4-20) мА может работать на нагрузку сопротивлением до 1 кОм, в диапазоне (0-5) мА – до 2,5 кОм.

Допустимая длина кабеля связи по токовому выходу определяется сопротивлением линии связи. При этом сумма входного сопротивления приемника токового сигнала и сопротивления линии связи не должна превышать указанного сопротивления нагрузки.

Питание токового выхода осуществляется от гальванически развязанного источника вторичного питания расходомера.

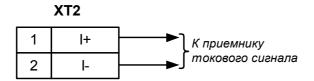
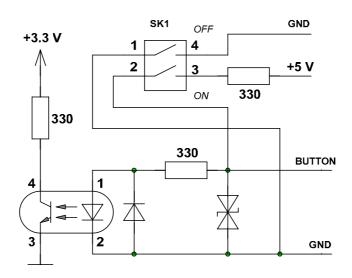
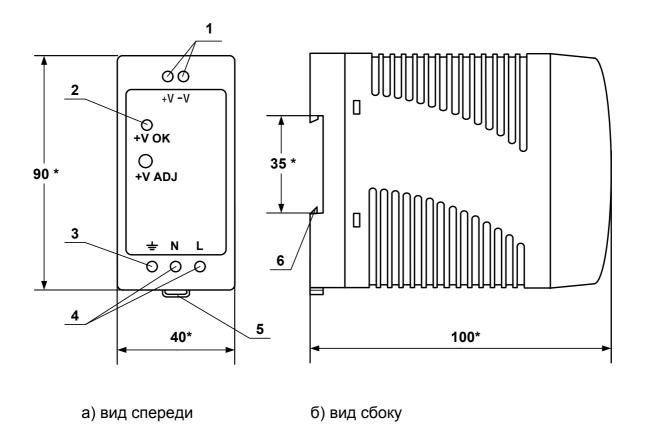


Рис.Б.2. Разъем XT2 токового выхода расходомера.

Б.3. Вход управления

Схема входа управления приведена на рис.Б.3.




Рис.Б.3. Схема входного каскада расходомера.

При нахождении переключателя SK1 в положении «OFF» (пассивный режим) в качестве управляющего сигнала на вход в цепь BUTTON-GND должны подаваться импульсы тока (0,5-20) мА.

В активном режиме работы входа (переключатель SK1 находится в положении «ON») управляющий сигнал может также формироваться замыканием контактов BUTTON-GND (например, с помощью кнопки) при сопротивлении внешней цепи не более 50 Ом.

В обоих случаях обеспечивается гальваническая развязка входной цепи.

ПРИЛОЖЕНИЕ В. Источник вторичного питания

* - справочный размер

1 — винты контактной колодки выходного напряжения =24 В; 2 — светодиодный индикатор включения источника вторичного питания; 3 — винт заземления; 4 — винты контактной колодки подключения напряжения питания ~220 В 50 Гц (L — линия, N — нейтраль); 5 — серьга для освобождения защелки; 6 — защелка для крепления на DIN-рейке.

Рис. В.1. Источник вторичного питания серии ADN-3024 (=24 В 30 Вт).

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 —

Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

сайт: www.vzljot.nt-rt.ru || эл. почта: vzl@nt-rt.ru